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A study on the Nonlinear Normal Mode Vibration Using 
Adelphic Integral 
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Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, 

which has 6 th order homogeneous polynomial as a nonlinear term, is studied in this paper. The 

existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase 

space. In order to find the analytic expression of the invariant curves in the Poincare Map, which 

is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, 

Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the 

Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is 

revealed that the integral of motion by Adelphic Integral is essentially consistent with the one 

obtained from the B-G trans|brmation method. The resulting expression of the invariant curves 

can be used for analyzing the behavior of NNM vibration in the Poincare Map. 
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1. Introduction 

The existence, bifurcation, and the orbital sta- 

bility of periodic motions, which is called non- 

linear normal mode, in a nonlinear dual mass 

Hamiltonian system, which has 6 TM order homo- 

geneous polynomial as a nonlinear term as shown 

in Fig. 1, are under consideration in this paper. In 

the previous work (Rhee, 1999) the dynamical 

structure of the same oscillator, was investigated 

by picturing the Poincare Map, which is a map- 

ping of a phase trajectory onto 2 dimensional 

surface in 4 dimensional phase space, by direct 
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integration of the equations of motion, and also 

by generating an approximation for the Poin- 

care Map via Birkhoff-Gustavson (Birkhoff, 1927; 

Gustavson, 1963; Month et. al., 1980) canonical 

transformation (Arnold, 1978) for small values of 

energy. In that work, particularly, the existence 

and the stability of Nonlinear Normal Mode was 

studied, and it was found that the system has 2 or 

4 Similar Nonlinear Normal Modes depending 

on the values of the nonlinear parameter k. The 

bifurcating modes enter as stable while the mode 

from which they bifurcated changes from condi- 

tion to unstable condition. 

In this paper, in order to find the analytic 

expression of the invariant curves in the Poincare 

Map, Whittaker's Adelphic Integral (Whittaker, 

1989), instead of the direct integration of the 

equations of motion, or the Birkhoff-Gustavson 

canonical transformation, is derived for small 

value of energy. We will show that although the 



A stud), on the Nonfinear Normal Mode Vibration Using Adelphic Integral 1923 

calculation process is so much complicated, the 

resulting integral of motion obtained by Adelphic 

Integral is consistent with the one obtained from 

the B-G transformation method. 

2. Whittaker's Adephic 
Integral and Relationship with 
Birkhoff-Gustavson's Integral 

The method using Adelphic Integral, was deve- 

loped by Whittaker (Whittaker, 1989), and starts 

with a canonical transformation which is defined 

in terms of action-angle variables. This method 

is based on the fact that the Poisson bracket of 

any integral ~b and the Hamiltonian H equals 

zero. The resulting integral ~b is known as Adel- 

phic integral. Whittaker has divided the method 

into different cases. The cases arise from problems 

associated with internal resonance. In this method 

zero divisors are associated with internal res- 

onances. Because the system shown in Fig. 1 has 

a 1:1 internal resonance, we will consider only 

internal resonance case in this paper. 

Let us begin with a generalized form of Ha- 

miltonian as follows: 

H(u ,  v) = H ( 2 )  (u,  v) + H ( 3 )  (u, v) 
(1) 

+ H ( 4 )  (u,  v) + " '  

where the quadratic term is of the form H(2)  
n 

(u, v ) = 5 2 ( ~ u ~ + v ~ ) / 2 ,  and H(3)  and H(4)  
v = l  

are cubic and quartic polynomials of  u and v, 

respectively. 

We can easily transform from (u, v) to (x, y) 

used in the previous work (Rhee, 1999), with the 

following canonical transformation ; 

Fig. 1 

F, & & 

F I  z it"3 = d "t" k d ~ 

~a-- o'~ 

Nonlinear oscillator which has a 5 t~ order 
nonlinearity in stiffenss 

U v  = X v /  I~ 1/2 

(2) Vv=~ll2yv 

First, we define canonical transformation from 
(u, v) to (Q, P); 

u= (2@ l/2a-l/s cos P (3a) 

v =  (2aQ)1/2 s in  P (3b) 

The variables Q and P are known as action- 

angle variables (Arnold, 1979: Whittaker, 1989; 

Goldstein, 1950). From the inverse transforma- 

tion of Eq. (3), we see that the action variables O 

corresponds to amplitude and the angle variable 

P corresponds to the polar angle locating the 

trajectory in the (u, v) phase space. 

Let us assume the system has two degree of 

freedom. In terms of the new variables (Q, P) ,  

H(2)  (u. v) becomes 

/7(2) (Q, P) = (mQ,+a2Oa) (4) 

and H(s ) (u ,  v) becomes a sum of terms pro- 

ceeding in powers of Q~I2 and Q~/a and in 

trigonometric functions of multiples of P1 and P2 ; 

that is, terms of the type 

QY2Q#/2cos(ip,+il~), s = m + n  (5) 

where m and n are nonnegative integers, and 

m-l i I, n-I j[ are zero or an even integer. 

We call s = m + n  the order of  the term. The 

general form o f / 7 ( 6 )  (Q, P) is as follows : 

Qa( y~+ Y2 cos 2P,+ Ya cos 4P~+ L cos 6P~) 
8 1 

+ QL~Q2~ { Ys cos (P~ + P~) + Y~ cos (P, - P2) 

+ Y7 cos (3PI+P2) + Ys cos (3P~-P2) 

+ 119 cos (5P~+P2) + Y~0 cos (5P~-Pa) } 

+ ~Q2 { Yv+ Y~2 cos 2P1+ Y~a COS 2P2 

+ Y~4 cos (2P~+2P=) + l']s cos (2P~-2~) 

+ ~6 cos 4P~ + Y~ cos (4PI+2P2) 

+ Y~8 cos (4P,-2P2) } 
a 3 

+ Q~Q2~ { Y~gcos(P~+P2)+Y2ocos(P,-P2) (6) 

+ Y2~ cos (3P~+P2) + Y2~ cos (3P , -  P2) 

+ Y~ COS (PI--3P2) + Y24 cos (Pt-3P2) 

+ Ya5 cos (3P~ + 3P2) + Y26 cos (3P~ - 3Pa) } 

+ O , ~  { Y~+ Yu cos 2P1+ I,[~ cos 2P~ 

+ ~o cos (2Pt+2P~) + Y31 COS (2P~--2Pa) 
+ Ysa Cos 4Pa+ Yaa Cos (2P~+4Pa) 

+ Ya4 cos (2P,-4P~) } 
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1 5 
+ Q~Q~ { Y~s cos (P~ + &) + G~ cos (P~- &) 

+ Y~7 cos (P~+ 3P~) + Yas cos (Pt-3P2) 

+ "f~ cos (P,+5P~)+ Y4o cos (P~- 5P2) } 
+ ~ (  Y~,+ Y~ cos 2P~+ Y~ cos 4P~+ Y~ cos 6P2) 

where Yds are coefficients. 
If ~b ( Q, P)  =cons t .  is an integral we must have 

d e  a¢ • a~ p 
d t  -- aO Q +  3 P  

3~ OH &k 8 H  (q~ (7) 
- a O  aP aP ~0 = " ~ ) = °  

where tildes are omitted for convenience. 
The notation in Eq. (7) is referred as the 

Poisson bracket .  We expand Eq. (7) and equate 
terms of equal order. For  example, if H = H  (2) + 
H ( 6 )  then from the Eq. (7) we have 

(¢(2)  ÷q~(4) ÷ ~b(6) +~b(8) + ~ ( 1 0 )  +--- .  
(s) 

H ( 2 )  + H ( 6 ) )  = 0  

Equating terms of  equal order, we have 

(~b(2), H ( 2 ) ) = 0  (9a) 

(~b(4), H ( 2 ) )  = 0  (9b) 

(~b(6), H ( 2 ) ) = - ( ~ b ( 2 ) ,  H ( 6 ) )  (%) 

(~b(8), H ( 2 ) ) = - ( ~ b ( 4 ) ,  H ( 6 ) )  (9d) 

(~b(10), H ( 2 ) )  = -  (~b(6), H ( 6 ) )  (9e) 

It is noted from Eq. (9a) that 

a¢(2)  , a~(2) 0 a~ ~ p ? - .  a~ ~ p U =  (1o) 

Let us assume 

¢(2)  = a ~ O , - a 2 O 2  (1 1) 

which certainly satisfies Eq. (10), and 

¢ ( 4 )  = ¢ ( 8 )  = 0  

which satisfies Eqs. (9b) and (9c). 
Substituting Eq. (11) into Eq. (9c), we have 

&b(6) - 0¢(6) OH(6) 0H(6) 
~ p ~ - - a ,  ~ 1 1  -0h ~ z  (12) ffl ~d- ~t'2 

This implies that to any term A c o s ( i P ~ + j P 2 )  in 
H ( 6 )  there corresponds a term { ( i m - - j a 2 / i a ~ +  

jaz) } A c o s ( i P l + j P z )  in ~b(6). 
Therefore, we can state the general form of q5 as 

follows : 

~=¢(2! +¢(6) +... 
=a~Ql-azQ.z+ @( Y2 cos 2P1+ Yz cos 4P1+ Y4 cos 6P1) 

s tf (a~-~) , ,I bt+~) +O~z~~ 1----=-- }scos(Pl+P +6-:---~ Y6cos(P~-P2) (f:+a/ " (a:-~) 

+ (3c,~-~) (3c,:+~)., 'F  P, Y7 cos (3P~+g) + ~  h cos I r~- .~ 
Ua~-~lt f l -~)  

+ (5fl-a) (5fl+ff2) Yl0 cos(5PI-P2)} 5 cos (SP~+Pz)+ 
/5a+~) (5f:-~) 

+(~@{ ~112 C0S 2Pl+ rta e0s 2 P 2 + ~  Yucos(2PlJ-2P2) 
. t a2) 

+ ~  hs cos t.r~-_~, + ~6 cos 4P~ 
-sit-,~) ' 

+ (4al-2~) E '4 n 2 ° (4al+2a) 
~ ~vcos(aPI+2P2)-~/4aI±z0~, -_ 18cost rl-  ,;} 

--01}02~{ ( ~ : i  YlgCOS(PI'-IO2) 4- ( ( : : ~  Y, oCos(P~-P,) (13) 

(3a~-o~) '3- . (3a+e) . 
+, - -  Y2t cos', P~ + P2) f f"~"@ Yr. cos(3P~-P2) 

(3at+a) (Ja~-f2) 

+ (a-3~), 'P ' 3"'+ (ft+3a2) ,o 3- 1" /~2) ~-~-@[NCOS(P1-- })2) 

t3,,+3~,l(3f'-3a) ~ ~"~i't1~--3 +~Yucos (3P , -3P2)}  

(2a-!a) 9 | -~ - -  
+Ol~ 1 ~s cos .P~- ~cos 2P:+ (2f~+2a) g~cos(2Pt+2Pz) 

(2fx+2a) 
+ ~  g~, cos (2P~-ZP2/- Y~ cos 4P~ 

-fl--~f2) 
+ (2fl-4ffe) (2ft+4a) 

g~ cos (2P~+4g + ~(2a,f~-4a)-4~ Y~4 cos !2P~-4P2) 

,' I 

+(.at-3o~ , ,_ _ a~ + 3 fz) . _ 
h~cos~P~+3B) + - 5~cos(P~-3P2) 

! f:+-~a) " (f~-30~l 
(a~-50~) ft+5c.~) . 

+ ( ~  5s cos(P,+SBI + ~  Y4ocosiP~-5P2)} 
(flJl-- ~ " (ffi--'ff2 

+@(- ~z cos 2Pa- Y,a cos 4P2- Y. cos 6Pz) +"' 

It should be noted that the Adelphic integral in 
Eq. (131) is well defined if we have no internal 
resonance. However, the system considered in this 
paper has internal resonance ( a ' i = e z = l ) ,  so we 
have zero divisors in the expression of  ~b. That  is, 

we obtain ~ b = ~ b ( 2 ) + ~ ) - - + - - . ,  but ~b(6) has 

terms with vanishing denominators,  D = O .  The 
first integral in this case becomes ~b=~b(6)+ 
~b(IO) + . . . ,  where ~b(6) consists of  those terms 
that contributed to D = O ,  neglecting arbitrary 
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constants.  Therefore,  

5 1 

0i6) = O~O2~ g~ c0s (P l-  P~ + O~O~ Y~ cos (2P~- 2P~/ 

+O~a2Oz~{ Y2ocos(P,+P2)+ Y:~c0s(3Pl-3Pa)} (14) 
1 5 

+ Q,Q~ Ya, cos (2PI-2Pa) + QdQ,.~Y~ cos (P,-P~', 

I f f ( Q ,  P ) - I  g ( Q '  P) -cons t .=~,  is a first in- 
/_t 

tegral, then mul t ip ly ing by /.t and taking the 

limit, as/.t---+ O, ~'---* co we can obtain g(Q,  P) = 
lim(/z~,) =const as the desired form of  the integral 
,u--O 

when /z=O. 

We now add the fol lowing terms 

C~Q~ + GQ~Q2+ GQ~Q~ + GQ~ 

which is the complementary  solut ion of  Eq. (12), 

to 95(6) and determine the arbi t rary  constants 

C~, C2, Ca and C4 by requir ing that terms with 

vanishing denominators  d i sappear  from higher  

order  term of 95. 

Therefore,  95(6) becomes as fo l lows:  

5 1 

0(6) = O~Oa~ g~ c0s (P~- Pa) + Q~Qz Yls cos (2P~-2P z) 
3 3 

+Q,zQ~{ Y~ocos(P~-Pa)+ Y~c0s 3P~-3P=/} (15) 
[ 5 

+ QaQ~ Yaa cos 12P,-2P2) + Qv-QJY~ cos (P~-P~) 
+ C~Q~+ C2QfQ2+ CaQzQ~+ C4Q~ 

To solve for the constants  C~, C2, Ca and C4, it ~s 

required that by Eq. (ge) 

(95(10), H ( 2 ) ) = - ( Q ( 6 ) ,  H ( 6 ) )  

where 95 (6) is given by Eq. (15). 

First ,  we expand the right hand side o f E q .  (9e) 

095(6) OH(6) 095(6) OH(6) 

OO~ OP~ OP~ OQ~ 
(16) 

095(6) o~H(6) ~95(6) 0 H ( 6 )  
-4- 

0 02 O P2 O P2 002 

and find the coefficients of  the terms that contr ib-  

ute to s i n ( P 1 - P 2 ) ,  s i n ( 2 P i - 2 P 2 ) ,  s i n ( 3 P x -  
3Pz), ..-, and then require them vanish. 

Final ly ,  we find 

G = C 4 = C .  
(17) 

C2=C3=3C - (5/4) ( k + l )  + ( 1 5 / 4 )  

Thus, Whi t taker ' s  Adelphic  integral  for our 

nonl inear  osci l la tor  is 

0=¢',6) 

= i-5/2! Q~Q/, c0s (P,-B/+ (5/2)Q~Q~ cos(2p,-2P~.) 
3 3 3 3 

+ ( - 15/2) Q~:O2~ c0s (P~- P2) - I, 5/6) Q~Oz~ cos (3P~- 3P2)} 1 8) 

+ (5/2)Q, Qg cos (2Pt- 2P2) -(5/2)O,½Oz~ cos (P,-P:) 
+ C,Q~+ C2Q~Q2C3Q~Q~+ C,Q~ 

where Cb C2, Ca and C4 are related by Eq. 17) 

and the constants  ~ ,  Yxs, ~0,  Yah and ~ 6  are 

obta ined by the Hami l ton ian  

H = (1/2) ( u f +  v~+ u~+ v~) + (k/6)  ( u~+ u~) 
+ ( I /6)  (Ul--  Ua) 6 (19) 

In order  to write 95 in terms of the or iginal  

coordinates  (u ,  v) ,  we use the inverse transfor-  

mat ion 

tan P =  v /  u 

Q =  ( u2 + v2) /2  

Thus we obtain 

(.b= (-5/10){(u~+v~)e÷3(u~+v~)(u~÷v~)+(u~+t:~) 2 } 
× ,,u~u2+ v~v2) 

+ 15/16) (U~+ I,'~+ U~ + Vg) + ( Uf- t'~) ( U~- V~) 

+ (5/4)(u~+ t'~+ u~+ v~) uluzvat'2 (')0) 

+ ! - 5/48) (zd- 3u~d.) I d-3u~dl + (3u~v~- d) 13 u~w.- &} 
+ lC/8){(u~ + d)' + (ui +v~? } 
+ (l/32) r. 12C-5k + 10) ( u~+ v~)(u~+ l,~)(u~ + r~ + u~+ v~) 

It is noted that if we compare  the above equa- 

tion to Eq. (29) in the reference (Rhee, 1999), 

we see that if C = ( 5 / 1 2 ) ( k + 1 )  then Whit ta-  

ker's Adelphic  integral (95w) and Birkhoff -Gus-  

tavson's  (95B-c) integrals are identical.  Therefore,  

if we take C = A +  (5/12) ( k + l )  so that A = 0  cor- 

responds to 95w =95B_c. Then, it can be seen that 

2 2 95w= 95._~+ s~+ [(u~ + v,) + (u~+v~)]~ 

which means that 

95w=95B_c+A[H(2)(u, v)] 3 (21) 

Thus 95w and 95~-c differ to 0(.6) by a cubic 
function of the Hamil tonian .  

We can construct the analyt ic  expression of the 

invariant  curves in the Poincare  Map by com- 

bining the integral of  mot ion in Eq. (20) with 

the Hami l ton ian  in Eq. (19) as discussed in the 
reference (Rhee, 1999). The detai led procedure  to 
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calculate the expression is omitted in this paper. 

Using the resulting analytic expression we can 

Q4~-- 

J 

• - "  i 
i 

,O..e. ~---. 

~ 4  0.0 0 

x 

(a', h - 0 . 1 ,  k = 4  

] 

.o4 r -  

[ 
,< 

. . [  . ! 

i. 

I 

i 
i 

1 i 

2 

J 
• 0 , l  O 0  

ib:, h=O.1, k - 8  

0 4  

F i g .  2 

" J 4 ~  

. . . .  L 
0 4  Q.O 0 4  

r 

(c) [1:0,1, k ' - -  I 

Invariant curves in the Poincare Map cal- 

culated using the integral of motion 

easily construct the Poincare Map. As can be seen 

in the figures in the reference (Rhee, 1999), the 

analytic expression represents essentially identi- 

cal invariant curves compared to the Poincare 

Map obtained by the direct integration of the 

equations of motion for small value of energy. 

Fig, 2 shows an example of the level lines cal- 

culated by Eqs. (19) and (20). As a result we can 

see that the nonlinear dual mass Hamiltonian 

system, which has 6 th order homogeneous poly- 

nomial as a nonlinear term considered in this 

paper has 2 or 4 Similar Nonlinear Normal 

Modes depending on the values of the nonlinear 

parameter k. The bifurcating modes enter as sta- 

ble while the mode from which they bifurcated 

changes from stable condition to unstable condi- 

tion. 

3. C o n c l u s i o n s  

Nonlinear normal mode vibration, in a non- 

linear dual mass Hamiltonian system, which has 

6 TM order homogeneous polynomial as a non- 

linear term, is studied in this paper. In order 

to find the analytic expression of  the invariant 

curves in the Poincare Map, Whittaker's Adelphic 

Integral, instead of the direct integration of the 

equations of motion or the Birkhoff-Gustavson 

canonical transformation, is derived for small 

value of energy. It is revealed that the integral 

of motion by Adelphic Integral is essentially 

consistent with the one obtained from the B-G 

transformation method. They differ to the order 

of 6 by a cubic function of the Hamiltonian. The 

resulting expression of the invariant curves can be 

used for analyzing the behavior of NNM vibra- 

tion in the Poincare Map. It can be clearly seen 

that the system considered in this paper has 2 or 

4 Similar Nonlinear Normal Modes depending 

on the values of the nonlinear parameter. The 

bifurcating modes are stable while the mode from 

which they bifurcated changes from stable condi- 

tion to unstable condition. 
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